Examples of quantum cluster algebras associated to partial flag varieties

نویسنده

  • Jan E. Grabowski
چکیده

We give several explicit examples of quantum cluster algebra structures, as introduced by Berenstein and Zelevinsky, on quantized coordinate rings of partial flag varieties and their associated unipotent radicals. These structures are shown to be quantizations of the cluster algebra structures found on the corresponding classical objects by Geiß, Leclerc and Schröer, whose work generalizes that of several other authors. We also exhibit quantum cluster algebra structures on the quantized enveloping algebras of the Lie algebras of the unipotent radicals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double-partition Quantum Cluster Algebras

A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double partitions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of...

متن کامل

5 N ov 2 00 6 Partial flag varieties and preprojective algebras

Let Λ be a preprojective algebra of Dynkin type, and let G be the corresponding semisim-ple simply connected complex algebraic group. We study rigid modules in subcategories Sub Q for Q an injective Λ-module, and we introduce a mutation operation between complete rigid modules in Sub Q. This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to G.

متن کامل

5 S ep 2 00 6 Partial flag varieties and preprojective algebras

Let Λ be a preprojective algebra of Dynkin type, and let G be the corresponding complex semisimple simply connected algebraic group. We study rigid modules in subcategories Sub Q for Q an injective Λ-module, and we introduce a mutation operation between complete rigid modules in Sub Q. This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to G.

متن کامل

The Quantum Cohomology of Flag Varieties and the Periodicity of the Schubert Structure Constants

We give conditions on a curve class that guarantee the vanishing of the structure constants of the small quantum cohomology of partial flag varieties F (k1, . . . , kr; n) for that class. We show that many of the structure constants of the quantum cohomology of flag varieties can be computed from the image of the evaluation morphism. In fact, we show that a certain class of these structure cons...

متن کامل

The Quantum Cohomology of Flag Varieties and the Periodicity of the Littlewood-richardson Coefficients

We give conditions on a curve class that guarantee the vanishing of the structure constants of the small quantum cohomology of partial flag varieties F (k1, . . . , kr; n) for that class. We show that many of the structure constants of the quantum cohomology of flag varieties can be computed from the image of the evaluation morphism. In fact, we show that a certain class of these structure cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009